
Lecture 7 – 30/10/2024

Carrier transport
- Mobility at low and high electric field

Out of equilibrium semiconductors
- Continuity equations
- Band-to-band recombinations
- Single-level recombinations

Semiconductor physics and light-matter interaction

Rather technical 
but also full of 
physics!
 Essential to 
gain a proper 
microscopic 
understanding of 
semiconductors
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Summary Lecture 6

Semiconductor physics and light-matter interaction

Fermi level calculation
Remember…

Degenerate semiconductor = Highly doped
(Boltzmann approx. not valid anymore)

Non-degenerate semiconductor

Non-degenerate semiconductors

Mass action law

Degenerate semiconductors
Boltzmann approx. no longer valid, Fermi-Dirac distr. 
step function

Indep. of T !
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Summary Lecture 6

Semiconductor physics and light-matter interaction

Occupancy of donor/acceptor levels

= + = Charge neutrality condition

Occupancy of donor/acceptor levels

Mobility

Carrier transport: impact of an electric field

Low T:

Intermediate T:

High T:

Charge neutrality with p = 0 

Fully ionized donors but no transition
from VB to CB (p = 0)                Indep. of T !
In practice, the minority carrier 
concentration is ≠ 0 so that (sl. 16 
Lect. 6) 

High thermal energy so intrinsic
behavior dominates  ,

(Illustration with donors)



Carrier transport
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Mobility vs doping
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n-type Si

Scattering due to interactions 
with the lattice (mainly LA and LO 
phonons, interband scattering, …)

Ionized impurities (Coulomb 
interaction) = f(vth, ND,A) 

5 3
2 2

LA effcst m T   

2
LO cst T  

1 1 1 ...
tot latt ions

Matthiessen rule    

Dominating term in purely covalent 
crystals (Si, Ge,…) 

Coulomb interaction most 
effective when vth is low, 
hence explaining why it 
dominates @ low T(K)

Hyperbolic trajectories 
(straight line far away from 
ionized impurities)

Interaction probability  ND,A
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Carrier mobility at low electric field

Semiconductor physics and light-matter interaction

Extrinsic regime Intrinsic regime

ND values 
given in cm-3



Mobility at high electric field
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At low electric field, the electrons can be considered as being in thermal equilibrium with the lattice.
Then, the electron velocity is proportional to the electric field

vd = µE      (microscopic equivalent of Ohm’s law)

At high electric field, the velocity due to the field is no longer negligible compared to the thermal
velocity. One can then introduce an effective temperature such that

1/2 m*ve
2 = 3/2 kBTe

with Te  > T. Considering as a first approximation that the mean free path does not change then the 
mobility writes

µ = qe/m* = (q/m*)(e/ve) = (q/m*) (c/c) (e/ve) = µ0  (v/) (e/ve) = µ0(T/Te)1/2

where µ0 is the mobility at low field and T is the lattice temperature
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“Hot” electrons

This term is accounting for the 
breakdown of Ohm’s law (Te
increases together with E as 
can be inferred from slide 8)
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Saturation velocity

Ohm’s law regime

Electric field

electrons
holes

Ve
lo

ci
ty

Saturation velocity
µ0(T/Te)1/2

Breakdown of Ohm’s law regime

The larger the electric field E, 
the larger Te until reaching
the saturation velocity



In the saturation regime, the energy increase stored by the electron and due to the high electric
field is released by emitting an optical phonon of energy Eph

qEsat × vsatop = Eph

vsat = µsatEsat = (qop/m*)EsatOn the other hand

vsat = (Eph/m*)1/2Finally

E

k

E
ph

9

Treatment valid because   cvth  opvsat

Semiconductor physics and light-matter interaction

Saturation velocity

GaAsSiSaturation 
velocity

1.2 × 107 cm s-11 × 107 cm s-1Experiments
3 × 107 cm s-12 × 107 cm s-1Calculations

d
dt

 extk F

Work

Mean free path  cst

Carrier mobility at saturation

Electric field at saturation

Side note: The energy relaxation process of hot electrons at saturation is ensured by the emission of an optical phonon, mostly LO 
ones, since the emission rate of such phonons is very high. The corresponding electron-phonon matrix element (due to Frölich
interaction) leads to a relaxation time due to scattering by LO phonons that is less than 1ps, a value which is significantly shorter than
the radiative lifetime of photons of the same energy (on the order of 1 s as will be computed in Lecture 14).



Effect at play in Gunn diodes to generate microwaves (1963)

m2>m1

m1

m2 > m1  µ2 < µ1

 R2 > R1

I

V

R2

R1

dI/dV<0

10

Negative differential 
resistance (NDR)

Semiconductor physics and light-matter interaction

Transfer toward upper minima in the CB (case of GaAs)

Macroscopic version 
of Ohm’s law

 XL  XL



Out of equilibrium
semiconductors
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Continuity equations
We go beyond thermal equilibrium for which np = ni

2 (mass action law) by considering the impact 
of excess carriers injected by electrical or optical means.

1n
G R

t q
  

      
nJ

where n(r,t) is the electron density in the differential volume element dV, G and R are the electron 
generation and recombination rates, respectively, and the divergence of Jn/q is the difference between 
the inward and outward flux of electrons in the volume dV.

1p
G R

t q
  

      
pJ Continuity equation for holes

The generation rate G can be both of thermal (Gth) and light-induced origin (GL). Electrons and holes 
being created simultaneously, their generation rates are identical.

Continuity equation for electrons

Sum of the drift and diffusion currents
 E Fick’s law
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Continuity equations
In the dark and under thermal equilibrium, we verify: Gth = R

The recombination rate depends on n(r,t) and p(r,t). Hence, for a direct band-to-band recombination 
process we get:

R = Bnp (mass action law) 

where the bimolecular recombination coefficient B is semiconductor-dependent

R

VB

CB

GLGth

Whenever possible, we will use the subscript “0” to define thermal equilibrium.
Therefore, we get:

Gth = Bn0p0
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Continuity equations
Out of equilibrium, we have    R – Gth = B(np-n0p0)

In a p-type semiconductor for small deviations from thermal equilibrium such that p  p0, we obtain

R – Gth  Bp0(n-n0)=(n-n0)/n

where n = 1/(Bp0) is the lifetime of electrons.

Similarly, for an n-type semiconductor, we obtain

R – Gth  Bn0(p-p0)=(p-p0)/p

where p = 1/(Bn0) is the lifetime of holes.

The expressions given for n and p are valid for direct band-to-band recombinations. For indirect 
recombinations through single levels, more complex expressions are at play. However, under 
weak injection, the general shape for R – Gth remains valid so that continuity equations can be 
used whatever the recombination mechanism that is involved.

Theoretical framework when describing the p-n junction
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Continuity equations
Under weak injection, we have

 

 

0

0

1

1

L

L

For a -type semiconductor,

and 

For an -type semiconductor,

and 

,

,

n

p

p

n nn p n
G

t q t t

n

p pp n p
G

t q t t





    
        

    
         

n

p

J

J

Let us note that this is the minority carrier concentration that determines the variation of global 
concentrations over time, which is expected for processes governed by a mass action law. 
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Band-to-band recombinations
Band-to-band recombination processes dominate in direct band gap semiconductors for weak 
to moderate doping or injection levels ( 1018 cm-3).

Example: Case of a p-type semiconductor (p0 >> n0) under weak injection (p = n << p0). At thermal 
equilibrium, we have:

Req = Gth = Bn0p0

For a system driven out of equilibrium, R will increase vs its Req value whereas to 1st order Gth will 
remain constant (Gth is determined by the energy distribution of free carriers, which does not depend 
on injection if it remains weak):

   0 0 0 0 0th .
n

n
R G B n n p p Bn p Bp n




        

The proportionality constant between (R-Gth) and n is taken equal to 1/n, i.e., as before we have:

0

0

1

1

 for electrons in a -type semiconductor

and similarly,

 for holes in an -type semiconductor

n

p

p
Bp

n
Bn









For radiative recombinations, B can be 
computed exactly
 To be seen at the very end of this 
semester (Lecture 14)!
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Band-to-band recombinations
For high free carrier concentrations (> 1018 cm-3), a novel band-to-band recombination process appears: 
the Auger process (also called the Auger-Meitner process).

Specificities of the Auger-Meitner process:
• Three-body process
• Non-radiative recombination process
• Interband energy given to the 3rd particle through an exchange of kinetic energy
• Probability of the process  n2p or p2n

 

 

2
0

2
0

1

1

Auger

Auger

 high injection 

 high injection 

,

,

,

,

n

p

n n
C p n

p p
C n p





  
    

  
    

• Coefficient C strongly temperature-dependent, 
with a dependence exp[-EC/kBT] where EC  Eg

Not to be confused with the 
conduction band minimum!

Auger coefficient
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Single-level recombinations
Single-level recombination processes dominate in indirect band gap semiconductors (e.g., in Si or Ge) 
owing to the very long (interband) radiative lifetime

Definition of emission and capture rates
For the sake of simplicity, we consider a single intermediate level, which can trap electrons.

Level characteristics:
• Two charge states: neutral state (empty acceptor) Nt

x and negative state (acceptor with a trapped 
electron) Nt

-

• 4 types of transition can be at play

a. Capture of an electron of the conduction band
Capture rate (mass action law)

t th t,
x x

c n n nr nN v nN  

× -βn = vthn where n is the electron capture 
cross section (at least on the order of 10-16 cm2, 
which is the cross section of an atom)

Electron capture coefficient
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Single-level recombinations

b. Emission of an electron toward the conduction band
Emission rate

t,e n nr e N
- ×

The emission rate is  Nt
- and en is the emission 

probability

c. Capture of a hole from the valence band ( emission of an electron toward the valence band)
Capture rate

t th t,c p p pr pN v pN    - ×

p is the hole capture cross section



 1
th t t th t t

t t t t t

 and 

 and 

with  and where  is the total concentration of acceptor levels and  is Fermi-Dirac distribution

Within Boltzmann approximati
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i

i
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th i t F B th t
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on for which, exp  and exp  we can show that:

exp

exp

,

n n n

p p p

n n E E k T p n E E k T

e v n E E k T v n

e v n E E k T v p

 

 

         

    
    
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Single-level recombinations
d. Emission of a hole toward the valence band ( capture of an electron of the valence band by the 

intermediate level)
Emission rate

t,
x

e p pr e N
× -

The emission rate is  Nt
x, which depicts centers 

that can emit a hole ( capture of an electron)

Determination of emission probabilities
At thermal equilibrium, we have an equality between emission and capture processes

where nt and pt are the electron and hole concentrations if EF = Et

Intrinsic Fermi level
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Single-level recombinations
Determination of the recombination rate under injection
Under injection, we assume that injection probabilities remain constant. Let us consider GL the 
electron-hole pairs generated per cm3 per second under illumination. The time-dependence of n and p
is given by:

L

L

, ,

, ,

e n c n

e p c p

dn
G r r

dt
dp

G r r
dt

  

  

Here, we neglect the band-to-band recombination terms vs emission and capture rates through 
traps. The net recombination rates through the traps (capture - emission) are then given by: 

 
 

th t t t

th t t t

, ,

, ,

x
n c n e n n

x
p c p e p p

R r r v nN n N

R r r v pN p N









   

   

In the steady-state, we fulfill Rn = Rp. Note however that n, p, Nt
- and Nt

x will all depend on the 
injection level and as such they cannot be expressed anymore as a function of EF. However, for the 
sake of simplification we will express Nt

- and Nt
x as a function of n and p.

 thermal equilibrium

No drift and diffusion current

Uniform excitation
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Single-level recombinations
Using:

   

   

t t t

t t t t t t

t t
th t

t t

and

we obtain:

x

x x
n p

n p
n p

N N N

nN n N pN n N

np n p
R v N

n n p p

 

 
 



 

 

  




  

The recombination rate is proportional to the product of capture cross sections and the total 
number of traps Nt. The maximum value of R will be reached by levels located close to the mid 
gap (very small nt and pt values vs n and p).

The theory describing recombinations occurring through single-levels located in the band gap is due 
to Shockley, Read and Hall and is often called SRH mechanism.

W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952); R. N. Hall, Phys. Rev. 87, 387 (1952)
> 5300 citations > 2200 citations

because Rn = Rp (= R) To be shown in the exercises!
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Single-level recombinations
Two specific cases

1
th t

th t

 with p p
p p

p
R v N p

v N
 

 


   

The lifetime of electrons will only depend on Nt and their capture cross section

• p-type semiconductor, weak injection: p = p0 + p  p0, n = n0 + n  n 
1

th t
th t

 with n n
n n

n
R v N n

v N
 

 


   

• n-type semiconductor, weak injection: n = n0 + n  n0, p = p0 + p  p 

Based on the relationship ntpt = ni
2 and the main result of previous slide, we get: 

   
2
i

t tp n

np n
R

n n p p 



  

The net recombination rate R goes through a maximum close to 
the middle of the band gap 
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Single-level recombinations
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Variation of the net recombination rate and the net generation rate 
normalized to their maximum value obtained when Et = EFi. The net 
generation rate increases rapidly when Et gets close to EFi unlike the net 
recombination rate that remains constant over a broad energy range. 

Recombination lifetime and generation lifetime versus energy level of the 
recombination center/trap.

 Determination of R and G and r and g to be done in the 
exercises!


