Lecture 7 — 30/10/2024

Carrier transport

- Mobility at low and high electric field
Rather technical -

but also full of

physics! - Out of equilibrium semiconductors
— Essential to  _ - Continuity equations

gain a proper - Band-to-band recombinations
microscopic _ - Single-level recombinations

understanding of
semiconductors
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Summary Lecture 6

Fermi level calculation

Remember...
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Non-degenerate semiconductors
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Mass action law

Degenerate semiconductors
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Boltzmann approx. no longer valid, Fermi-Dirac distr. ~
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— Non-degenerate semiconductor
n (or p) << N, (or N,) = E; lies in the bandgap

N /n (orp) > N (or N,) = the Fermi level lies within the CB (or VB)

Degenerate semiconductor = Highly doped
(Boltzmann approx. not valid anymore)

Ex A Conduction band -~
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Summary Lecture 6

Occupancy of donor/acceptor levels

N 1
Np=Ny+N; Ny =N

- +
D 1+2e(EF—EC+ED)/kBT n+NA _p+ND

Charge neutrality condition

Occupancy of donor/acceptor levels (iustration with donors)

I[K" e Low T: Charge neutralitywithp=0= N = N;
i' Ny =102 m3

Intrinsic
regime

1022 4

regime I
Impurity
regime

In practice, the minority carrier

Electron concentration

. . . Fully ionized donors but no transition
Saturation | Intermediate T: . '~ 2" "¢ (p = 0) — N =Ny Indep.of T!

concentration is # 0 so that (sl. 16 n=N,+p
A 4 Lect. 6) =
T T 2 16_®. . . High thermal energy so intrinsic
o High T: behavior dominates = N, >> ND ,N=p=n,
Carrier transport: impact of an electric field
« dv, (1) qr
F=gFE=m —— = = = ¢ il
q 7 <V>=V, uE U o Mobility
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Carrier transport
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Carrier mobility at low electric field

Coulomb interaction most
effective when v, is low,
hence explaining why it
dominates @ low T(K)

Hyperbolic trajectories
(straight line far away from
ionized impurities)

Interaction probability oc Ny

o1
c 1
[v . (ND,A )A}
_1 3
ILIND,A oc meféNI;,IATA

lonized impurities (Coulomb
interaction) = f(vy,, Np ,)
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Mobility vs doping
Intrinsic regime

Electron Mobility (cm?V ™! s
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Temperature (K)
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Scattering due to interactions
with the lattice (mainly LA and LO
phonons, interband scattering, ...)

_% T_%

= CSt-m g

Dominating term in purely covalent
crystals (Si, Ge,...)

fho=cst-T~

y :y +y +... Matthiessen rule
:utot lulatt luions




Mobility at high electric field
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“Hot"” electrons

At low electric field, the electrons can be considered as being in thermal equilibrium with the lattice.
Then, the electron velocity is proportional to the electric field

vy = UME  (microscopic equivalent of Ohm'’s law)

At high electric field, the velocity due to the field is no longer negligible compared to the thermal
velocity. One can then introduce an effective temperature such that

1/2 m*v2= 3/2 kg T,

Overview

with T, > T. Considering as a first approximation that the mean free path does not change then the
mobility writes

S This term is accounting for the

K = qrm* = (qIm*)(A/ve) = (qIm*) (74 ,) (A/Ve) = Ho (VIA) (A4/ve) = p(TIT,) V2, breakdown of Ohm's law (T,
See - - increases together with E as
can be inferred from slide 8)

where L, is the mobility at low field and T is the lattice temperature
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Saturation velocity

8 Ohm'’s law regime Breakdown of Ohm’s law regime
10 <= T —T— —
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Saturation velocity

In the saturation regime, the energy increase stored by the electron and due to the high electric
field is released by emitting an optical phonon of energy E,,, E ,

%Esat X Vsat z-op = Eph Work
Electric field at saturation <
On the other hand Vg, = PgaiEsat = (9 70,/M")Eat Y
/\ h e k = Fext
_ 1/2 Carrier mobility at saturaton | — dt
Finally | Vgt = ( ph/m )
>

Treatment valid because A~ 7, vy~ 7,,Vsy  Mean free path = cst

Side note: The energy relaxation process of hot electrons at saturation is ensured by the emission of an optical phonon, mostly LO
ones, since the emission rate of such phonons is very high. The corresponding electron-phonon matrix element (due to Frélich
interaction) leads to a relaxation time due to scattering by LO phonons that is less than 1ps, a value which is significantly shorter than
the radiative lifetime of photons of the same energy (on the order of 1 us as will be computed in Lecture 14).

Saturation

velocity
Experiments 1x 10" cm s 1.2x 10" cm s
Calculations 2 x 10’ cm s’ 3 x10’ cm s
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Transfer toward upper minima in the CB (case of GaAs)

<& <€ <
GaAs Conduction Gaas Conduction > m <
band band ma 1= pz l‘“
_Uppcr = R2 > R1
vallev
I A - :
- R1 Macroscopic version
Lower y
u ) <l u of Ohm’s law
' R>
,\ d//dVv<0
Valence Valence >
band band \ V4
[111] 0 [100] [111] 0 [100]
r X r X Negative differential
(a) (b) resistance (NDR)

Effect at play in Gunn diodes to generate microwaves (1963)
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Out of equilibrium
semiconductors

Semiconductor physics and light-matter interaction
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Continuity equations

We go beyond thermal equilibrium for which np = n? (mass action law) by considering the impact
of excess carriers injected by electrical or optical means.

aon 1
P =G—-R —I-( jV J Continuity equation for electrons
q

where n(r,t) is the electron density in the differential volume element dV, G and R are the electron
generation and recombination rates, respectively, and the divergence of’J /q is the dlfference between

- ~\

the inward and outward flux of electrons in the volume dV. g, o thedrlft and/dn‘fusmn currents
\ocE / “\Fick’s law, /

~—_—— ="

0 1
8_6 =G—R- [—j V. Jp Continuity equation for holes
q

The generation rate G can be both of thermal (G,) and light-induced origin (G, ). Electrons and holes
being created simultaneously, their generation rates are identical.

Semiconductor physics and light-matter interaction
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Continuity equations

In the dark and under thermal equilibrium, we verify: Gy, = R

The recombination rate depends on n(r,t) and p(r,f). Hence, for a direct band-to-band recombination
process we get:

R = Bnp|(mass action law)

where the bimolecular recombination coefficient B is semiconductor-dependent

o o o CB

Gy, G, R
- VB

000 000 o000l 00

Whenever possible, we will use the subscript “0” to define thermal equilibrium.
Therefore, we get:

Gy, = Bngpy

Semiconductor physics and light-matter interaction
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Continuity equations

Out of equilibrium, we have R — Gy, = B(np-nyp,)

In a p-type semiconductor for small deviations from thermal equilibrium such that p = p,, we obtain

R — Gy, = Bpo(n-ng)=(n-ny)/ z,

where |z, = 1/(Bpy)|is the lifetime of electrons.

N

Similarly, for an n-type semiconductor, we obtain

R — Gy, = Bng(p-po)=(p-po)/ 7,

is the lifetime of holes.

h

where|r

= 1/(Bn,

The expressions given for 7, and 7, are valid for direct band-to-band recombinations. For indirect
recambinations through smgle Ievels more complex expressions are at play. However, under

\weak |nject|on, the general shape for R — G, remains valid so that continuity equations can be
uséd wihatever the recombination mechanism that is involved.

Theoretical framework when describing the p-n junction
Semiconductor physics and light-matter interaction 14



Continuity equations

Under weak injection, we have

For a p-type semiconductor,

o \q r ot ot

For an n-type semiconductor,

ot q P T ot ot

p

Let us note that this is the minority carrier concentration that determines the variation of global
concentrations over time, which is expected for processes governed by a mass action law.

Semiconductor physics and light-matter interaction 15



Band-to-band recombinations

Band-to-band recombination processes dominate in direct band gap semiconductors for weak
to moderate doping or injection levels (< 108 cm-3).

Example: Case of a p-type semiconductor (p, >> n,) under weak injection (Ap = An << p,). At thermal
equilibrium, we have:

Req = Gth = BnopO

For a system driven out of equilibrium, R will increase vs its R, value whereas to 15t order Gy, will
remain constant (G, is determined by the energy distribution of free carriers, which does not depend
on injection if it remains weak):

R—G,, =B(n, +An)-(p, +Ap)—Bn,p, = Bp, - An ~

An

n

The proportionality constant between (R-G,,) and An is taken equal to 1/z,, i.e., as before we have:

T =

n

Tp:

1
—— for electrons in a p-type semiconductor

Bp,

Bn,

and similarly,

for holes in an n-type semiconductor

Semiconductor physics and light-matter interaction

For radiative recombinations, B can be
computed exactly

— TJo be seen at the very end of this
semester (Lecture 14)!
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Band-to-band recombinations

For high free carrier concentrations (> 10'® cm-3), a novel band-to-band recombination process appears:
the Auger process (also called the Auger-Meitner process).

Specificities of the Auger-Meitner process:

« Three-body process
* Non-radiative recombination process
 Interband energy given to the 3" particle through an exchange of kinetic energy
« Probability of the process o« np or pn

n,Auger

p,Auger

Q

Q

1

C-(p,+An)’
1

—_—

P
N

C:(n+4p)

, high injection n ~ An

, high injection p = Ap

Auger coefficient

Semiconductor physics and light-matter interaction

Not to be confused with the
conduction band minimum!

- Coefficient C strongly temperature-dependent, T
with a dependence exp[-E/kgT] where(:EC}oc E,
C Band C Band C Band

4 / \ \
21 3 3
E, E, E,
8 > 8 21 g
/ 3 1 N
HHBand 4 \H Band 4 HH Band

SO Band LH Band
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Single-level recombinations

Single-level recombination processes dominate in indirect band gap semiconductors (e.g., in Si or Ge)
owing to the very long (interband) radiative lifetime

Definition of emission and capture rates
For the sake of simplicity, we consider a single intermediate level, which can trap electrons.

Level characteristics:

« Two charge states: neutral state (empty acceptor) N* and negative state (acceptor with a trapped
electron) Ny

» 4 types of transition can be at play

a. Capture of an electron of the conduction band

Capture rate (mass action law)
- _____— Electron capture coefficient

= X
rc,n — ﬂnnNt — vthGnnNt

<— e

B, = vy,0, where o, is the electron capture X - o
cross section (at least on the order of 10- cm?,
which is the cross section of an atom)

Semiconductor physics and light-matter interaction 18



Single-level recombinations

b. Emission of an electron toward the conduction band
Emission rate

re,n — enNt

The emission rate is «« N and e, is the emission

probability

c. Capture of a hole from the valence band (= emission of an electron toward the valence band)
Capture rate

r., = B,pN; =v,0,pN, o .

o

o, is the hole capture cross section

Semiconductor physics and light-matter interaction
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Single-level recombinations

d. Emission of a hole toward the valence band (= capture of an electron of the valence band by the
intermediate level)
Emission rate

_ X
r,,= epNt o

The emission rate is «« NX, which depicts centers
that can emit a hole (= capture of an electron)

o—

Determination of emission probabilities

At thermal equilibrium, we have an equality between emission and capture processes
r.,=r,andr_=r,
vy,o,nN; =e N; and v, o, pN, =eN;

with N; =N, f and N} =N, (1-f) where N, is the total concentration of acceptor levels and f is Fermi-Dirac distribution

Within Boltzmann approximation for which, n = niexp[(EF —(7:'Fi )\/I(kBT} andp = niexp[(EFi —E, )/kBT] ,we can show that:

Intrinsic Fermi level

e, =V, 0,nexp [(Et —E; )/kBT] =Vv,0,Nn,

where n, and p, are the electron and hole concentrations if E¢ = E,
e,= vthO'pniexp[(EFi —E, )/kBT} =V,0,P,

Semiconductor physics and light-matter interaction



Single-level recombinations

Determination of the recombination rate under injection
Under injection, we assume that injection probabilities remain constant. Let us consider G, the
electron-hole pairs generated per cm3 per second under illumination. The time-dependence of n and p

is given by:

% =G, +r,, I, Uniform excitation
dp No drift and diffusion current

Here, we neglect the band-to-band recombination terms vs emission and capture rates through
traps. The net recombination rates through the traps (capture - emission) are then given by:

—_— - —_— X — -
R,=r.,—r,,=V.0, (nNt n.N, )

e,n
_ _ - X
R,=r.,—r,,=V4aO, (pNt —p.N, )

# thermal equilibrium

-———
—— ‘\

-
= -——

sake of simplification we will express N, and Ny as a function of n and p.

Semiconductor physics and light-matter interaction
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Single-level recombinations

Using:
N +N, =N,
and
o, (nN; —nN, ) =0, (pN; —nN;)  because R,=R,(=R)  To be shown in the exercises!

we obtain:

hp—n.p,
o,(n+n)+o,(p+p,)

R = O'nGthhNt

The recombination rate is proportional to the product of capture cross sections and the total
number of traps N,. The maximum value of R will be reached by levels located close to the mid
gap (very small n, and p, values vs n and p).

The theory describing recombinations occurring through single-levels located in the band gap is due
to Shockley, Read and Hall and is often called SRH mechanism.

W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952); R. N. Hall, Phys. Rev. 87, 387 (1952)
> 5300 citations > 2200 citations

Semiconductor physics and light-matter interaction 22



Single-level recombinations

Two specific cases

« p-type semiconductor, weak injection: p = p, + Ap = py, 1 = ny + An = An

An
R=o0,,NAn=— with 7, =
T o, VN,

n

The lifetime of electrons will only depend on N, and their capture cross section

» n-type semiconductor, weak injection: n=ny+ An=ny, p=py+ Ap = Ap

1
R=o,yv NtApzﬁ with 7, =
T

p~th
p p th" "t

Based on the relationship np, = n? and the main result of previous slide, we get:

np—n; The net recombination rate R goes through a maximum close to

R= .
(n+n)z,+(p+p,)7,| the middle of the band gap

Semiconductor physics and light-matter interaction
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Single-level recombinations

Generation/recombination rates

T T
RECOMBINA- | | GENERATION
8 TION ! ' LIFETIME
LIFETIME (Tg)
e (Te)

]
1 )
|
! |
1
T
|
e
Lo ekl
\ |
\ 1
\ !
\ ]
[}
[

LIFETIME /(v 0 Np~!

(E,—Ei)/kT
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Variation of the net recombination rate and the net generation rate
normalized to their maximum value obtained when E, = Eg,. The net
generation rate increases rapidly when E, gets close to Eg; unlike the net
recombination rate that remains constant over a broad energy range.

Recombination lifetime and generation lifetime versus energy level of the
recombination center/trap.

— Determination of R and G and z,and z, to be done in the
exercises!
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